# 教養ゼミ コンピュータビジョンとその周辺 資料1 大島正毅

|            | 人間                             | 機械          |
|------------|--------------------------------|-------------|
| 標語         | 人間的                            | 機械的         |
| 融通         | きく                             | きかない        |
| 感覚         | すぐれてい<br>る ( 見る、<br>聞く、触る<br>) | これからの課<br>題 |
| くり返<br>し作業 | 喜ばない                           | 得意とする       |

機械に人間的なことができたら、もっと便利な世の中になると考えられる: 単純労働、危険作業、福祉...

見る、聞く、話す、五感のある機械

認識、知識、知能、知覚

人の顔を見分ける 文字を読み取る 街を歩く 作業をする スポーツをする TVを楽しむ 石頭コンピュータ 1と0の世界 何とか人間の感覚に近付けたい ロボット 繰り返しが基本

目の工学的実現を目指して コンピュータビジョン

目で見て判断するとは:

文字の読み取り

図形の区別

色の判断

動きの検出

立体構造物の把握

カエルの目 動きに感じる

鯉 色の区別できる

ネコ 色の区別できない

サル 人と同じように判断できているらしい

工学的に見ると:

非接触遠隔計測

多点計測

得られる情報量が多い

コンピュータビジョンの歴史

1960年代前半 米国MIT L.G. Roberts

積み木の認識(計算機内に物体の3次元モデル、観測画像からエッジ抽出、線画の構成、モデルの透視変換と仮定してベストマッチの位置・姿勢を判断)

faxで物体(積み木)の写真を計算機に入力

エッジ抽出(定石定まる)

物体モデル

透視変換によるマッチング

ハンド・アイ実験 1960年代後半 米国MIT、スタンフォード大学、英国エジンバラ 大

少し遅れて(1970年)日本 日立中央研究所、電子技術総合研究所

一応の成功を収めるが問題の難しさも分かってきた テーブル ( グラウンド ) の仮定

その後、地道な研究の積み重ね ハンドとアイは別の道をたどる。ハンドアイ実験は

その後10年くらいあまりなされなくなった。

対象の広がり 積み木 室内 屋外 静止画処理から 動画像処理へ 入出力機器、処理装置の進歩

産業応用研究開発と発展・実用

ビジョンの関連分野

(狭義の)画像処理 画像の強調、ボケの回復、ノイズ除去

文字読取

図面処理

(シーンアナリシス)

産業用画像処理(マシンビジョン)

ロボットビジョン

医療用画像処理(強調(例 疑似カラー)、CT、イメージング、X線像(胸部、胃)) リモートセンシング(衛星、航空機)

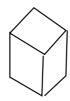
動画像解析

色彩画像処理

テクスチャ解析

レンジデータ処理

パターン認識、人工知能 CG、CAD、CAM


#### 画像処理の定石

画像入力、(前処理)、重要な部分(特徴)の抽出(線、領域など)、特徴同士の相互関係(記述)を求める、照合(あらかじめ分っているものと未知のものが一致するか調べる) 判断結果 別に処理対象の記憶(学習、教示、モデル化)、戦略(ボトムアップ、トップダウン)

#### 画像とは



対象



### 光源

{自然光、人工照明}、種類{点、線、面}、色{単色、マルチスペクトル}、数 {単一、複数}、位置、方向

## 対象

形、位置、姿勢、反射率 { 乱反射、完全反射 } 、色、模様、光沢

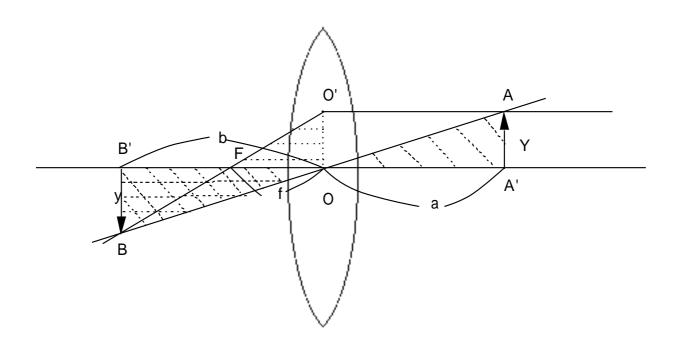
# 受光系

位置、姿勢、感度の波長特性、特性、画素数、濃淡(色)のレベル数、色のRGB or マルチスペクトル、種類 { 点、線、面 }

{ 2 値画像、濃淡画像、カラー画像、距離画像 }

({リモートセンシングデータ、医用画像{X線、CT}、顕微鏡、赤外線、マイクロ波、超音波、偏光})

扱うデータ


2 値画像

濃淡(階調)画像

カラー画像

距離画像

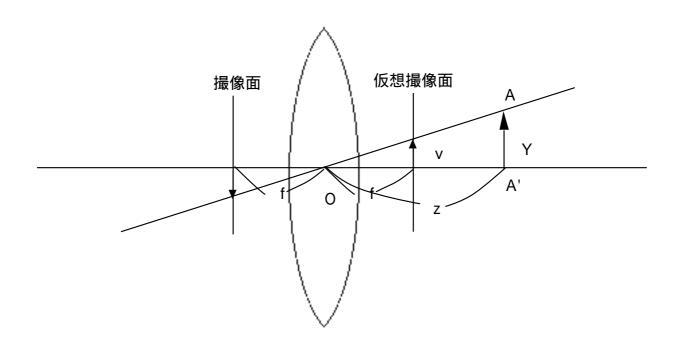
他の方法(CT、リモートセンシング)



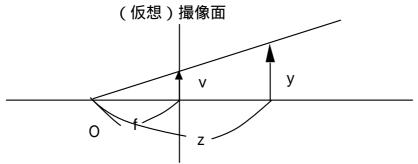
対象とする点Aを通る光の内平行光はレンズ通過後Fを通り、O(レンズの主点)を通る光は向きが変わらない。この2つの光線の交わりとして結像点Bが定まる。他の光もレンズ通過後結像点を生じるように進む。

$$\frac{y}{Y} = \frac{b}{a} \quad \frac{y}{Y} = \frac{b-f}{f}$$
これより
$$\frac{b}{a} = \frac{b}{f} - 1 \quad \div b$$

$$\frac{1}{a} = \frac{1}{f} - \frac{1}{b} \, \mathtt{L} \, \mathtt{T}$$

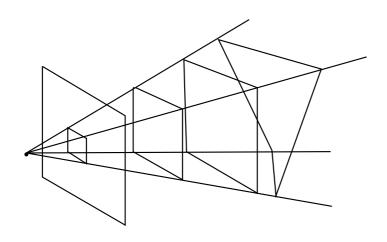

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f}$$
 この式より 
$$\frac{1}{b} = \frac{1}{f} - \frac{1}{a}$$
 
$$= \frac{a - f}{f a}$$

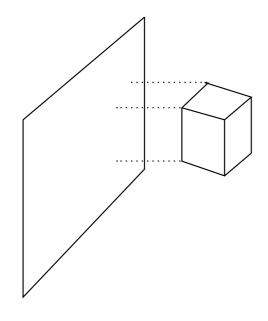
a >> fのとき


右辺
$$_{-}\frac{a}{fa}=\frac{1}{f}$$
よって

 $b_-f$  これをピンホールモデルという。 焦点(ピント)合わせとは、与えられたf, aに対し、式を満すbを定めること

カメラモデル





実際の結像はレンズの後方となるが、仮想の撮像面をレンズ前方に置くと、結像する像の大きさは変らない。また倒立像でなく正立像となる。この方がモデルが単純化される。(慣例的にテレビの横座標、縦座標をu,vで表すことが多い)



レンズの中心(視点)の前方に撮像面があると考え、ここに前方の対象yがvの大きさ で結像するものとする。3角形の相似から  $\frac{z}{f}=\frac{y}{v}$ 

カメラはこのように近似でき、3次元の世界を透視投影によって2次元に変換する。他に正射影として扱う場合も(まれに)ある。





一般に、カメラで撮像するとき、3次元 2次元の変換が行われるので立体情報は失われる。立体情報は重要なので、ぜひそれを得たい。画像から立体情報を得ることを立体情報の再構成(Reconstruction)または復元という。ビジョンの重要なテーマである。

人間は10種類くらいの方法(両眼立体視、shape from shadingなど)を使って立体情報の再構成を行っていると考えられている。